
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Survey on Penetration Test Tools for Controller Area
Networks∗

Full Paper

Enrico Pozzobon
Technical University of Applied Sciences Regensburg

Regensburg, Germany
enrico.pozzobon@othr.de

Nils Weiss
Technical University of Applied Sciences Regensburg

Regensburg, Germany
nils2.weiss@othr.de

Sebastian Renner
Technical University of Applied Sciences Regensburg

Regensburg, Germany
sebastian1.renner@othr.de

Rudolf Hackenberg
Technical University of Applied Sciences Regensburg

Regensburg, Germany
rudolf.hackenberg@othr.de

ABSTRACT
Controller Area Networks (CANs) are still most used network tech-
nology in todays connected cars. Today and in the near future,
penetration tests in the area of automotive security will still require
tools for CAN media access. More and more open source automo-
tive penetration tools and frameworks are presented by researchers
on various conferences. All with different properties in terms of
usability, features and supported use-cases. If one wants to start
with security investigations in automotive networks, he has to find
a proper tool for his investigations by try and error of available
solutions. This paper compares current available CANmedia access
solutions and gives an advices on competitive hard- and software
tools for automotive penetration testing.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability;

KEYWORDS
CAN, Penetration Testing, Benchmarks
ACM Reference Format:
Enrico Pozzobon, Nils Weiss, Sebastian Renner, and Rudolf Hackenberg.
2018. A Survey on Penetration Test Tools for Controller Area Networks: Full
Paper. In Proceedings of ACM Computer Science in Cars Symposium (ACM-
CSCS’18). ACM, New York, NY, USA, 9 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Since the automotive industry is moving towards autonomous driv-
ing, more and more cars are or will soon be connected to a backend
system in the Internet, the security of automotive systems becomes
a crucial factor in the process of developing self-driving cars. With
∗Produces the permission block, and copyright information

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM-CSCS’18, September 2018, Munich, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

additional remotely accessible interfaces, which are needed to en-
able the communication between vehicles and the Internet, the
attack surface of a modern car significantly increases. Furthermore,
this development can expose protocols like CAN, which usually
only have been used in the car’s internal network, to remote ports.
Since for example the CAN protocol was developed decades ago, it
does not introduce any kind of mechanisms to secure the commu-
nication. The combination between the introduction of new con-
nected interfaces, which are necessary for the use of self-driving
features and the use of legacy and potentially unsecured protocols
creates a new high-impact risk in the context of attacks on the car’s
IT security. Therefore the evaluation of this risk is an important
factor in the process of security testing. To ensure reliable and suf-
ficient testing, professional tools specifically developed to support
automotive protocols are needed.

This paper introduces themost commonly used frameworks, soft-
and hardware available in the field of automotive security testing.
Additionally, a pattern on how to cluster them into subgroups will
be shown. Moreover, different criteria, valid to conduct an extensive
comparison between the chosen tools will be described, followed
by a survey on the the actual tools. After explaining the test process
for each subject under test, the test results will be concluded. The
last paragraph will cover possible aspects that may be researched
in the future.

2 RELATEDWORK
In the area of performance evaluation of CAN drivers the work of
Sojka et. al is mentionable. They performed an extensive timing
analysis of the commonly used driver SocketCAN, in comparison
with their own solution LinCAN on different Linux Kernels [21][20].
This differs from the research proposed in this paper, since it focuses
solely on the driver itself, while we observe CAN tool solutions as
a whole. Further research regarding CAN tools was published by
Lebrun et. al in 2016. Lebrun and Demay introduced CANSPY, a
tool for CAN frame inspection and manipulation, especially built
to aid with security evaluations of CAN devices [9].

Besides the work done on CAN testing, in the field of web appli-
cations, alike surveys relevant to analyzing security tools have been
conducted in the past. For example, Fonseca et. al benchmarked
web vulnerability scanning tools using criteria such as vulnerability

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 1 of 1–9.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM-CSCS’18, September 2018, Munich, Germany E. Pozzobon et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

coverage and the false positive rate [3]. Doupe et. al accomplished
similar research with the evaluation of vulnerability scanners for
web applications in 2010 [1].

3 GENERAL REQUIREMENTS FOR
AUTOMOTIVE PENETRATION TESTING

This section introduces some basic requirements for automotive
penetration testing. A competitive tool should fulfill the follow-
ing requirements. All mentioned requirements are derived from
practical use-cases in automotive penetration testing.

3.1 Protocol Viewer
During any security tests on automotive networks, a clear way
to inspect the current traffic on a network is absolutely necessary
to improve the efficiency of automotive security investigations. A
security researcher needs an interface which displays the live traffic
and allows detailed investigations on captured data. A penetration
tool has to detect and interpret the used protocol automatically. In
addition to that, such a viewer needs to be extensible with additional
brand specific protocol information. The following protocols should
be supported

• CAN (ISO 11898)
• Unified Diagnostic Services (UDS) (ISO 14229)
• General Motor Local Area Network (GMLAN)
• CAN Calibration Protocol (CCP)
• Universal Measurement and Calibration Protocol (XCP)
• ISO-TP (ISO 15765)
• Diagnostic over Internet Protocol (IP) (DoIP) (ISO 13400)
• On-board diagnostics (OBD) (ISO 15031)
• Ethernet (ISO 8802/3)
• TCP/IP (RFC 793, RFC 7323 / RFC 791, RFC 2460)

3.2 Packet-Manipulation and Fuzzing
An automotive penetration test tool should be able to fuzz all com-
mon automotive and Ethernet protocols. A fuzzer with an easy to
use interface and the capability of fuzzing and listening on different
network interfaces at the same time should be available in a pene-
tration test tool. The desired response of a fuzzed message often
shows up on a different interface, maybe with a different protocol,
or on output pins of an Electronic Control Unit (ECU). Another
feature is conditional fuzzing. In many situations, an ECU has to be
set into a special state before a fuzzer can send the message which
has to be fuzzed.

3.3 ECU-Simulation
Usually, an ECU under test needs a special environment for its nor-
mal operation. This environment has to be simulated with periodic
CAN and UDS messages on a connected bus. For more advanced in-
vestigations, a remaining bus simulation is required. Vector CANoe
TODO CITEME for example is specialized in this kind of simula-
tion. For white-box security tests, this would be the tool of choice
for complex remaining bus simulations. On black- and gray-box
security tests, periodic messages are sufficient to spoof a certain
operation state. Capturing, modifying and periodically replaying of
various messages has to be supported by this penetration test tool.

3.4 Man in the Middle (MITM) Capabilities
In order to investigate the communication from a specific ECU, this
ECU has to be isolated through a MITM attack. An advanced pene-
tration test tool needs some functionality to setup a MITM proxy
between two CAN or Ethernet interfaces. In addition, functions to
filter or hijack the communication between ECUs are very useful
during black-box security investigations.

3.5 Media Access Layer Requirements
The mentioned higher level requirements are absolutely necessary
for efficient penetration testing in automotive networks. It is possi-
ble to derive the following media access requirements from these
existing requirements. For verification of this media access layer
requirements, multiple benchmarks will be created on available
interfaces for the media access to CAN. A performance evaluation
of media access interfaces for automotive penetration tests will be
introduced in the final section of this paper.

3.5.1 Latency. The latency between the initiation of a write to
an automotive network from an user space application to the actual
presence of this data on the bus is crucial for all kind of fuzzing
and spoofing tests. If one wants to for example react as soon as
possible on a certain CAN message and send out a specific message
as response, the latency of the media access interface has to be as
short as possible.

3.5.2 TX-Throughput. During the investigation of denial of ser-
vice or flooding attacks on the CAN bus, a penetration test tool
should be capable of creating a throughput which leads to a bus
load of 100 percent. To achieve this load from user space writes of
a penetration test application, the interface driver, the operating
system and the media access device itself need to be able to handle
writes to the bus faster as the time a message is present on the bus.

3.5.3 RX-Throughput. A common use case in automotive pen-
etration testing is the sniffing of firmware updates on the CAN
bus. During firmware updates of ECUs on the CAN bus, usually
only the target ECU and the ECU or the repair shop tester, which
are delivering an update, are allowed to communicate on the bus.
All other ECUs remain silent until the flashing procedure finishes.
This dedicated communication to only two ECUs on the bus allows
maximum bandwidth for the firmware transfer. This leads also to a
maximum bus load. A media access device for penetration tests, the
operating system and the used drivers need to be capable of hand-
ing over this bandwidth to a user space application. Otherwise, the
penetration tester is missing messages which leads to inconsistent
results.

3.5.4 Reliability. For any security investigation in automotive
networks, the penetration test tool needs a certain reliability. Often,
traces and captures can be done only once or require extensive
preparations to the device under test. Unreliable tools will make
difficult security investigations in automotive networks even harder
or lead to wrong results.

4 CLASSIFICATION OF MEDIA ACCESS TYPES
Whenever one wants to start with automotive penetration test-
ing, a soft- and hardware tool for the communication with a car’s

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 2 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Survey on Penetration Test Tools for Controller Area Networks ACM-CSCS’18, September 2018, Munich, Germany

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

CAN-bus is required. To get an overview of existing open-source
automotive penetration test frameworks, a survey on existing appli-
cations and tools for automotive penetration tests was conducted.
This survey focused on hard- and software interfaces to access
automotive networks (CAN). The following table gives an overview
of common used hard- and software for the media access to CAN.

SL
CA

N
D
ev
ic
e

EL
M
32
7

So
ck
et
CA

N

Py
th
on

-C
A
N

O
th
er
s

Busmaster [13] X
c0f [18] X

can-utils [14] X
CANiBUS [17] X X
CANToolz [16] X X

Caring Caribou [15] X
Kayak [10] X

Metasploit [12] X X
O2OO [25] X

pyfuzz_can [6] X
python-OBD [26] X

Scapy [24] X X
UDSIM [19] X

Wireshark [27] X
Table 1: Summary of used hard- and software for CAN-bus
access in open-source automotive penetration test frame-
works.

With respect to the evaluation of used media access interface on
public available penetration test frameworks, the most used media
access interfaces will be taken into account on a performance eval-
uation. In order to be able to compare available CAN media access
solutions for automotive penetration testing, representative groups
for the different interface solutions have been selected. Devices
inside a group have an identical hard- and software architecture,
and will therefore show a similar behavior during benchmarks.

The following list shows the chosen groups for the media access
layer comparison of CAN-bus interfaces:

(1) Native-CAN
The CAN-peripheral module is directly accessible from the
main processor. A BeagleBoneBlack with an AM335x 1 GHz
ARM Cortex-A8 processor and a Banana Pi Pro with an
Allwinner A20 dual core ARM processor are the used devices
under test in this group. All automotive penetration test
frameworks which use SocketCAN or Python-CAN are able
to use lower layer CAN-bus interfaces from this group.

(2) Serial Peripherial Interface (SPI)-to-CAN
The CAN-peripheral module is accessible over a SPI con-
nection. A Raspberry Pi with a MCP2515 TODO CITE_ME
SPI-CAN module is used as device under test. SocketCAN is
the common way to give an user space application access to
the CAN-bus in this group.

(3) Universal Serial Bus (USB)-to-CANover Serial LineCAN
(SLCAN)

The CAN-peripheral module is accessible over a serial line
communication. The SLCAN protocol is used to access the
CAN-bus from the device under test. The open hard- and soft-
ware project USBtin TODO CITE_ME is used as an interface
in this class. User space applications can either access the
CAN-bus directly over a serial connection, or can connect
to a SocketCAN socket, which is offered by an application
called slcand.

(4) ELM327 TODO CITE_ME
The ELM327 is an OBD-to-serial interface with a custom AT
command set. As a device under test, an ELM327 with USB-
interface is used. The CAN-bus is accessible over a serial
interface.

(5) USB-to-CAN
The CAN-peripheral is accessed over a USB-interface in this
class. As devices under test, a PEAK PCAN TODO CITE_ME
and a Vector VN1611 TODO CITE_ME USB to CAN adapter
are used. Devices inside this group require proprietary dri-
vers. For user space applications, the CAN-bus is accessible
through dynamic linked libraries supported by python-CAN
or SocketCAN sockets.

The following listing shows media access devices which were
excluded from this benchmark. A brief reason for for the exclusion
is given:

• CANtact [2]
CANtact has a very similar architecture to USBtin. It is likely,
that the test results would be very similar to each other.

• CANBadger [4]
The CANBadger has to be build on your own. It is currently
not possible to order a ready-to-use piece of hardware, the
parts and software for the CANBadger are available and have
to be assembled together according to the datasheets.

• Kvaser [8], IXXAT [11] and INTREPID Control Sys-
tems tools [7]
These tools are similar to tested tools in the USB-to-CAN
group. Including them into the survey would probably just
produce duplicated results, which does not create and an
added value to this research.

• GoodThopter12 [5]
The GoodThopter12 has a similar architecture as the USBtin.
The results should be similar to the results in the USB-to-
CAN over SLCAN group.

5 BENCHMARKING CRITERIA AND
PROCESS

5.1 Test-Setups
Every media access device has to be tested individually and with a
different setup. All tests on media access devices were performed
by user space applications, running with maximum priority and
compiled with maximum optimization settings (where applicable).
All the tests involving a USB-to-CAN device were executed on the
same laptop computer. All operating systems were tested with the
minimum amount of modifications from the moment of installation,
including installation of the required software to run the tests,

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 3 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM-CSCS’18, September 2018, Munich, Germany E. Pozzobon et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

drivers for the CAN interfaces, and device trees for the native CAN
implementations.

• TI AM3358 (Native CAN)
– Platform: BeagleBone Black
– OS: Debian GNU/Linux 8
– Kernel: 4.4.54-ti-r93 #1 SMP
– User space application: Compiled program, written in C,
using SocketCAN

• Allwinner A20 (Native CAN)
– Platform: Lemaker Banana Pro
– OS: Armbian GNU/Linux 9
– Kernel: 4.14.18-sunxi #24 SMP
– User space application: Compiled program, written in C,
using SocketCAN

• MCP2515 (SPI-to-CAN)
– Platform: Raspberry Pi 2 Model B
– OS: Raspbian GNU/Linux 9
– Platform-specific settings: SPI clock frequency set to 8MHz
– Kernel: 4.14.30-v7+ #1102 SMP
– User space application: Compiled program, written in C,
using SocketCAN

• USBtin (USB-to-CAN over SLCAN)
– Platform: Dell Latitude E5470
– OS: Antergos Linux
– Kernel: 4.15.15-1-ARCH #1 SMP PREEMPT
– User space application: Compiled program, written in C,
using SocketCAN

• ELM327 (USB-to-OBD)
– Platform: Dell Latitude E5470
– OS: Antergos Linux
– Platform-specific settings: UART baud rate set to 460.8 kHz
– Kernel: 4.15.15-1-ARCH #1 SMP PREEMPT
– User space application: Compiled program, written in C,
using glibc termios

• PEAK PCAN (USB-to-CAN)
– Platform: Dell Latitude E5470
– OS: Antergos Linux
– Kernel: 4.15.15-1-ARCH #1 SMP PREEMPT
– User space application: Compiled program, written in C,
using SocketCAN

• Vector VN1611 (USB-to-CAN)
– Platform: Dell Latitude E5470
– OS: Windows 10
– User space application: Python script

5.2 Test Procedure
All tests were executed with the maximum baud rate supported by
the tested device. This maximum baud rate was 1 MHz for every
device except for the ELM327 which only supports a maximum rate
of 500 kHz.

All tests involved connecting the device under test to a micro-
controller and a logic analyzer for taking measurements. The logic
analyzer was connected to the microcontroller CAN TX and RX
pins, in parallel to the transceiver, and the length of the bus con-
necting the tested device to the microcontroller was 1.2 meters.

5.2.1 Latency Test. The objective of this test is to measure the
amount of time taken by each tool and framework to forward a
CAN frame from the physical layer to the user application and vice
versa. This measurement is important because it shows whether a
tool is suitable for timing-critical tasks, such as replying to a frame
before an ECU does, or triggering an action every time a packet is
detected on the bus.

In order to test for latency, a microcontroller with CAN capa-
bilities (Espressif ESP32 [22]) was connected to the bus and set to
send a CAN frame every 20 ms, while the device under test was
configured to receive these CAN frames and reply as soon as pos-
sible with another frame. A logic analyzer was connected to the
receive and transmit lines between the transceiver and the micro-
controller, and set to sample data at 10 million samples per second.
Since the maximum CAN baud rate reachable by the tested devices
is 1 MHz, a sampling rate of 10 MHz is sufficient to capture and
parse the individual CAN frames. An C application was developed
using the Sigrok library to interface with the logic analyzer and
capture precise timings of the time between a CAN frame coming
from the microcontroller and the response coming from the device
under test [23].

Given a pair of "request" and "response" CAN frames (where
the request is sent by the microcontroller and the response is sent
by the device under test), we define the latency introduced by the
tested device and framework to be the time passed from the "ACK"
field of the request CAN frame and the "START OF FRAME" field of
the response frame. During this time, the frame is received by the
hardware of the Device Under Test (DUT) and it is forwarded to the
user space application, which immediately generates the response
CAN frame without any processing or delay. The measured latency
therefore represents the time which a CAN frame takes to travel
from the physical layer to the application layer and back to the
physical layer.

It is notable, that the latency measured in this way can never be
lower than ten baud lengths according to the CAN specification,
since between the "ACK" field and the "START OF FRAME" field
of the next frame there must always be an "END OF FRAME" field
consisting of seven recessive bits and an "INTERMISSION" field
consisting of three recessive bits. However, while achievable on a
microcontroller, such a low latency was never obtained on any of
the tested devices, since they all involve a user space application
running on a non real-time operating system.

5.2.2 TX-Throughput Test. The objective of this test is determin-
ing how fast a given device can write frames to the CAN bus, and
what is the maximum data rate it can transmit at. Such a test is
important to verify that a device is capable of flooding the bus with
frames and simulating an high load on the bus.

To execute this test, a small program was written for each tested
software stack that would simply send the same CAN frame one
million times in a loop, while connected to a microcontroller that
would only acknowledge every frame. The CAN lines were probed
with a logic analyzer to measure the time passed between each
frame, and statistical data was extracted from these measure.

The test was repeated with two different kinds of CAN frames:
Frames without a payload and frames with a payload of the maxi-
mum size. The smaller frames which still have an effective amount

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 4 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Survey on Penetration Test Tools for Controller Area Networks ACM-CSCS’18, September 2018, Munich, Germany

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

of data of 11 bits in the identifier (contained in the "ARBITRATION
FIELD") were used to test the maximum frame rate achievable by
each device. The longer frames which contain 75 bits of data were
used to test the maximum achievable bit rate by each device.

In this test, there was no noticeable difference in the results
when testing an high-level framework (e.g. Scapy) or the low layer
implementation (e.g. SocketCAN), due to the amount of buffering
done by the operating systems and the relatively low data rate
of the CAN bus when compared to the speed which frames are
processed at. Therefore, only one test setup result is shown for each
tested device.

5.2.3 RX-Throughput Test. The objective of this test was deter-
mining how fast a given device can read frames from the CAN bus,
and what is the maximum data rate it can receive at. This test is
important for determining if a device can receive all CAN frames
in a situation of high bus load, such as when an ECU firmware is
transmitted as part of a software update.

To execute this test, the microcontroller was programmed to out-
put a CAN frame one million times with the smallest delay allowed
by the CAN specification between one frame and the next. In order
to achieve maximum consistency in the transmission interval, as
well as sending the same number of frames whether they were be-
ing acknowledged or not, the CAN frames were transmitted using
the Inter-Integrated Circuit (IC) Sound (I2S) peripheral of the ESP32
microcontroller. The validity of the CAN frames sent and of their
timing was verified with the help of a logic analyzer.

The test was repeated multiple times for each device, with both
short (no payload) and long (8 bytes payload) frames. The time
between the start of two consecutive frames was 48 bauds for the
short frames, and 111 bauds for the long frames. During each test
sequence, the number of frames received by the device under test
was recorded with a simple program, and the test was repeated
1000 times, for a total of 109 frames sent to each device for both
long and short frames.

6 EVALUATION OF MEDIA ACCESS DEVICES
6.1 Latency Evaluation
The results for the latency tests are presented in the form of his-
tograms, Empirical cumulative distribution function (ECDF) and
box plots.

The vertical axis of the histogram represents the relative fre-
quency of the time measured in one request-response pair. The
most desirable result would be to have a single sharp peak centered
as close to 0 ms as possible, and a wide curve indicates a large
variance in the measurements. The presence of multiple peaks in
many histograms might indicate that a buffer is being filled asyn-
chronously with the received CAN frames and it is only being read
after a timeout expires, or it might be due to the operating system
executing code for handling interrupts from other peripherals.

The ECDF plots present the integral of the data shown in the
histograms. Given a point (x , y) in these plots, y is the probability
that a frame was replied to in time less than x ms. The intersection
between the curve and the 0.5 horizontal line in the ECDF plot
shows the average latency for that device, while the upmost part
represents the worst case scenario.

Figure 1: Latency histogram for USB to CAN devices, all
tested on the same laptop computer.

Figure 2: Empirical distribution function of the latency for
USB to CAN devices, all tested on the same laptop computer.

Figure 6: Box plot of the measured latency for the tested de-
vices. Whiskers represent the 5%�and 995%�quantiles.Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 5 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM-CSCS’18, September 2018, Munich, Germany E. Pozzobon et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Latency histogram for single board computers us-
ing SocketCAN.

Figure 4: Empirical distribution function of the latency for
single board computers using SocketCAN.

6.2 TX-Throughput Evaluation
When testing the transmission speed of the PCAN and Vector USB-
to-CAN interfaces, on any framework or operating system, the
performance was always good enough to obtain a 100% utilization
of the bus. Any variance found in the results of these interfaces is
only present in the first couple of frames, after which the buffer
becomes full and any subsequent sent frame will enter the bus as
soon as it becomes free.

Single board computers with native interfaces performed could
almost constantly send enough CAN frames to reach 100% bus load,
but had a larger variance in the results, likely due to other processes
sharing time on the limited CPUs.

The bottleneck for the transmission speed of the USBtin is the
emulated USB UART device, which appears to operate at a maxi-
mum speed of 411 kb/s. The speed is further limited by the overhead

Figure 5: Box plot of the measured latency for the tested de-
vices. Whiskers represent the 5%�and 995%�quantiles.

of the SLCAN protocol, which is introduced by the use of hexadeci-
mal characters and the framing of SLCAN commands, which more
than halve the effective bitrate.

The MCP2515 SPI-to-CAN interface is also a bottleneck. While
the speed of the SPI interface would be sufficient to transfer all
the commands necessary to send a CAN frame in a time smaller
than the duration of the CAN frame itself, each successful trans-
mission enables the TX0IF flag in the CANINTF register of the
MCP2515. TODO CITE_Datasheet Then this happens, the interrupt
pin is signaled, and the MCP2515 driver on the operating system
will query the interface for the pending interrupt. The three SPI
commands necessary for reading and resetting the TX0IF flag and
the interruption caused by the driver amount to a total overhead of
approximately 70 µs for each sent CAN frame when the SPI clock
frequency is set to 8 MHz.

µ [kb/s] σ [kb/s]

USBtin + SocketCAN 57.9261 0.94254
pi2 MCP2515 + SocketCAN 66.0764 4.0136
Banana Pro + SocketCAN 209.29 7.054

BBB + SocketCAN 225.2256 14.7024
PCAN + SocketCAN 229.1065 0.046076

PCAN + python CAN on linux 229.1066 0.0461
PCAN + python CAN on windows 228.5465 1.6716

Vector + python CAN 228.568 0.042923
Table 2: Results for TX-Throughput evaluation with short
CAN-frame on the tested media access devices.

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 6 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Survey on Penetration Test Tools for Controller Area Networks ACM-CSCS’18, September 2018, Munich, Germany

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

µ [kb/s] σ [kb/s]

ELM327 46.8751 2.4707
USBtin + SocketCAN 138.7733 7.3381

pi2 MCP2515 + SocketCAN 348.8258 9.6974
Banana Pro + SocketCAN 649.1451 5.1531

BBB + SocketCAN 672.3208 12.6014
PCAN + SocketCAN 675.5985 0.2309

PCAN + python CAN on linux 674.9145 0.11954
PCAN + python CAN on windows 674.9153 0.052812

Vector + python CAN 674.9029 0.13812
Vector + scapy 674.9034 0.05797

Table 3: Results for TX-Throughput evaluation with long
CAN-frame on the tested media access devices.

6.3 RX-Throughput Evaluation
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et doloremagna aliquyam
erat, sed diam voluptua. At vero eos et accusam et justo duo dolores
et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est
Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consete-
tur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut
labore et dolore magna aliquyam erat, sed diam voluptua. At vero
eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

TODO: ELM327 is missing

µ [kb/s] σ [kb/s]

USBtin + SocketCAN 89.0387 0.00010953
pi2 MCP2515 + SocketCAN 217.5796 2.8753

BBB + SocketCAN 94.3395 1.4791
Banana Pro + SocketCAN 228.855 1.5459

PCAN + SocketCAN 229.1495 0.028675
PCAN (Windows) + python-can 229.1667 0

Vector + python-can 229.1667 0
Table 4: Results for RX-Throughput evaluation with short
CAN-frame on the tested media access devices.

µ [kb/s] σ [kb/s]

USBtin + SocketCAN 179.9568 0.0020292
pi2 MCP2515 + SocketCAN 482.6823 16.6219

BBB + SocketCAN 674.4699 2.2591
Banana Pro + SocketCAN 675.5324 0.30141

PCAN + SocketCAN 675.6757 0
PCAN (Windows) + python-can 675.6757 0

Vector + python-can 675.6757 0
Table 5: Results for RX-Throughput evaluation with long
CAN-frame on the tested media access devices.

7 EVALUATION OF PENETRATION TEST
FRAMEWORKS

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et doloremagna aliquyam
erat, sed diam voluptua. At vero eos et accusam et justo duo dolores
et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est

Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consete-
tur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut
labore et dolore magna aliquyam erat, sed diam voluptua. At vero
eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Figure 7: Latency histogram for USB to CAN frameworks, all
tested on the same laptop computer.

Figure 8: Empirical distribution function of the latency for
USB to CAN frameworks, all tested on the same laptop com-
puter.

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 7 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM-CSCS’18, September 2018, Munich, Germany E. Pozzobon et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 9: Latency histogram for single board computers us-
ing different frameworks.

Figure 10: Empirical distribution function of the latency for
single board computers using different frameworks.

Figure 12: Box plot of the measured latency for the tested
frameworks.Whiskers represent the 5%�and 995%�quantiles.

Figure 11: Box plot of the measured latency for the tested
frameworks.Whiskers represent the 5%�and 995%�quantiles.

8 CONCLUSION
Non of the investigated tools and frameworks showed an error-free
performance on Linux. Proprietary tools on Windows performed
very good overall. The python-can framework delivered good re-
sults on both tested operating systems, Linux and Windows. Fur-
thermore, this framework supports open and closed source media
access devices.

Very popular tools like the ELM327 or USB-to-CAN over SLCAN
devices had a bad outcome in our performance evaluation. These
tools aren’t usable for advanced penetration tests with higher CAN
baud rates.

Single-board-computers are a very good alternative to profes-
sional CAN media access devices. The availability of a full-featured
operating system creates a high level of usability in a wide variety
of applications. The tested devices are available for less than 100
euros. This fact brings single-board-computers into the same price
range as popular CAN interfaces like the ELM327 or USB-to-CAN
over SLCAN devices.

Professional CAN tools for automotive engineering tasks showed
the best results in terms of reliability and throughput. However,
these tools are of course much more expensive than single-board
computers.

9 FUTUREWORK
Inspected automotive penetration test frameworks showed only
very limited penetration test capabilities. Most tools only support
one specific use case. An open source tool with support of various
car brands and proprietary automotive protocols is not available,
yet. On the other hand, commercial tools do not perfectly fit for
penetration testing tasks and are very expensive in general. Also
the fact that commercial tools are closed source software products
decreases the suitability and flexibility for specific penetration tests.
To improve automotive penetration testing in general, comprehen-
sive open source tools, which fulfill the mentioned requirements
from section 3 are necessary. This paper showed that the software

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 8 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A Survey on Penetration Test Tools for Controller Area Networks ACM-CSCS’18, September 2018, Munich, Germany

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

and hardware interfaces, python-can and SocketCAN, are appro-
priate for the implementation of advanced automotive penetration
frameworks.

In the future, our research in the area of automotive penetration
testing tools will be focused on developing a new framework based
on existing open-source software. The experience gathered during
the work for this paper will serve as a base of requirements when
designing the tool. Later, similar tests will be conducted to evaluate
and verify the framework’s performance.

REFERENCES
[1] Adam Doupé, Marco Cova, and Giovanni Vigna. 2010. Why Johnny Can’t Pentest:

An Analysis of Black-boxWeb Vulnerability Scanners. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
111–131.

[2] Eric Evenchick. 2016. CANtact. (2016). Retrieved April 16, 2018 from http:
//linklayer.github.io/cantact/

[3] Jose Fonseca, Marco Vieira, and Henrique Madeira. 2007. Testing and comparing
web vulnerability scanning tools for SQL injection and XSS attacks. InDependable
Computing, 2007. PRDC 2007. 13th Pacific Rim International Symposium on. IEEE,
365–372.

[4] Code White GmbH. 2016. CANBadger. (2016). Retrieved April 16, 2018 from
https://gutenshit.github.io/CANBadger/

[5] Travis Goodspeed. 2017. GoodThopter12. (2017). Retrieved April 16, 2018 from
http://goodfet.sourceforge.net/hardware/goodthopter12/

[6] Bill Hass. 2018. pyfuzz_can. (2018). Retrieved April 16, 2018 from https:
//github.com/bhass1/pyfuzz_can

[7] INC. INTREPID CONTROL SYSTEMS. 2018. INTREPID. (2018). Retrieved April
16, 2018 from https://www.intrepidcs.com/

[8] Kvaser. 2018. Kvaser. (2018). Retrieved April 16, 2018 from https://www.kvaser.
com

[9] Arnaud Lebrun and Jonathan-Christofer Demay. 2016. Canspy: a platform for
auditing can devices. (2016).

[10] Jan-Niklas Meier. 2014. Kayak. (2014). Retrieved April 16, 2018 from http:
//kayak.2codeornot2code.org/

[11] HMS Industrial Networks. 2018. IXXAT. (2018). Retrieved April 16, 2018 from
https://www.ixxat.com

[12] Rapid7. 2018. Metasploit. (2018). Retrieved April 16, 2018 from https://www.
metasploit.com/

[13] RBEI and ETAS. 2017. BUSMASTER. (2017). Retrieved April 16, 2018 from
https://github.com/rbei-etas/busmaster/

[14] Volkswagen Group Electronic Research. 2018. Linux-CAN / SocketCAN user
space applications. (2018). Retrieved April 16, 2018 from https://github.com/
linux-can/can-utils

[15] Christian Sandberg, Kasper Karlsson, Tobias Lans, Mattias Jidhage, Johannes
Weschke, and Filip Hesslund. 2018. Caring Caribou. (2018). Retrieved April 16,
2018 from https://github.com/CaringCaribou/caringcaribou

[16] Alexey Sintsov. 2017. CANToolz - framework for black-box CAN network anal-
ysis. (2017). Retrieved April 16, 2018 from https://github.com/CANToolz/
CANToolz

[17] Craig Smith. 2013. CAN Device Vehicle Research Server (OpenGarages.org).
(2013). Retrieved April 16, 2018 from https://github.com/Hive13/CANiBUS

[18] Craig Smith. 2015. CAN of Fingers (c0f). (2015). Retrieved April 16, 2018 from
https://github.com/zombieCraig/c0f

[19] Craig Smith. 2017. UDSim. (2017). Retrieved April 16, 2018 from https://github.
com/zombieCraig/UDSim

[20] Michal Sojka, Pavel Píša, Ondřej Špinka, and Zdeněk Hanzálek. 2011. Mea-
surement automation and result processing in timing analysis of a Linux-based
CAN-to-CAN gateway. In Intelligent Data Acquisition and Advanced Comput-
ing Systems (IDAACS), 2011 IEEE 6th International Conference on, Vol. 2. IEEE,
963–968.

[21] M. Sojka, P. PÃŋÅąa, M. Petera, O. Åăpinka, and Z. HanzÃąlek. 2010. A compar-
ison of Linux CAN drivers and their applications. In International Symposium
on Industrial Embedded System (SIES). 18–27. https://doi.org/10.1109/SIES.2010.
5551367

[22] Espressif Systems. 2018. Espressif Systems ESP32. (2018). Retrieved April 16,
2018 from https://www.espressif.com/en/products/hardware/esp32/overview

[23] Bert Vermeulen Uwe Hermann. 2018. Sigrok. (2018). Retrieved April 16, 2018
from https://sigrok.org/

[24] Guillaume Valadon and Pierre Lalet. 2018. Scapy. (2018). Retrieved April 16,
2018 from http://www.secdev.org/projects/scapy/

[25] Folkert van Heusden. 2014. O2OO. (2014). Retrieved April 16, 2018 from
https://www.vanheusden.com/O2OO/

[26] Brendan Whitfield. 2016. python-OBD. (2016). Retrieved April 16, 2018 from
https://github.com/brendan-w/python-OBD

[27] Peter Wu. 2018. Wireshark. (2018). Retrieved April 16, 2018 from https:
//www.wireshark.org/

Submission ID: 123-A12-B3. 2018-05-03 08:42. Page 9 of 1–9.

http://linklayer.github.io/cantact/
http://linklayer.github.io/cantact/
https://gutenshit.github.io/CANBadger/
http://goodfet.sourceforge.net/hardware/goodthopter12/
https://github.com/bhass1/pyfuzz_can
https://github.com/bhass1/pyfuzz_can
https://www.intrepidcs.com/
https://www.kvaser.com
https://www.kvaser.com
http://kayak.2codeornot2code.org/
http://kayak.2codeornot2code.org/
https://www.ixxat.com
https://www.metasploit.com/
https://www.metasploit.com/
https://github.com/rbei-etas/busmaster/
https://github.com/linux-can/can-utils
https://github.com/linux-can/can-utils
https://github.com/CaringCaribou/caringcaribou
https://github.com/CANToolz/CANToolz
https://github.com/CANToolz/CANToolz
https://github.com/Hive13/CANiBUS
https://github.com/zombieCraig/c0f
https://github.com/zombieCraig/UDSim
https://github.com/zombieCraig/UDSim
https://doi.org/10.1109/SIES.2010.5551367
https://doi.org/10.1109/SIES.2010.5551367
https://www.espressif.com/en/products/hardware/esp32/overview
https://sigrok.org/
http://www.secdev.org/projects/scapy/
https://www.vanheusden.com/O2OO/
https://github.com/brendan-w/python-OBD
https://www.wireshark.org/
https://www.wireshark.org/

	Abstract
	1 Introduction
	2 Related Work
	3 General Requirements for Automotive Penetration Testing
	3.1 Protocol Viewer
	3.2 Packet-Manipulation and Fuzzing
	3.3 ECU-Simulation
	3.4 MITM Capabilities
	3.5 Media Access Layer Requirements

	4 Classification of Media Access Types
	5 Benchmarking Criteria and Process
	5.1 Test-Setups
	5.2 Test Procedure

	6 Evaluation of Media Access Devices
	6.1 Latency Evaluation
	6.2 TX-Throughput Evaluation
	6.3 RX-Throughput Evaluation

	7 Evaluation of Penetration Test Frameworks
	8 Conclusion
	9 Future Work
	References

